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Interactive Anomaly Detection in Dynamic
Communication Networks
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Abstract— Network flows are the basic components of the
Internet. Considering the serious consequences of abnormal
flows, it is crucial to provide timely anomaly detection in
dynamic communication networks. To obtain accurate anomaly
detection results in dynamic networks, supervision from experts
is highly demanded. However, to obtain high-quality ground
truth of abnormal flows, we suffer from two major problems:
(1) limited labor resources: experts with the latest domain
knowledge are much fewer than the large number of flows;
and (2) dynamic environment: considering the new abnormal
patterns (i.e., new attacks) and continuously changing network
structures, it requires timely supervision to adaptively update
the parameters. To tackle these problems, we propose HADDN,
a novel bandit framework for periodic-updated anomaly detec-
tion in dynamic communication networks. We formulate the
task as a bandit problem, where by interactions, supervision
is offered by human experts to provide the ground truth to
a fraction of flows. We construct semi-parametric expected
rewards to optimize the estimation of flows’ abnormality in
limited interactions. Also, we utilize feature-based clusters and
structural correlations to make connections between historical
flows and new flows to improve both efficiency and accuracy of
abnormality estimation. What’s more, we provide two implemen-
tations for the semi-parametric expected reward of the proposed
HADDN with theoretical proof. Experimental evaluations on
public datasets demonstrate the substantial improvement of our
proposed approaches compared to state-of-art anomaly detection
methods.

Index Terms— Anomaly detection, interactive learning,
dynamic networks, communication networks, semi-parametric
bandits.
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I. INTRODUCTION

INTERNET is becoming an essential part of our daily life.
As necessary components of the Internet, network flows

have attracted much attention. Especially, abnormal flows
can have great negative impacts on users and Internet-based
companies and will lead to catastrophic costs. Thus, to keep
the Internet secure, it is crucial to provide timely detection on
abnormal flows in dynamic communication networks. Note
that, anomaly detection is an umbrella term that aggregates
many different tasks, e.g., novelty detection, outlier detection
and rare event detection [1]. In this paper, as attacks are
employed to jeopardize cyber security and will incur much
higher costs than other abnormality types in communication
networks, we refer “abnormality” to abnormal flows with
attacks (e.g., denial-of-service, infiltration or port scan), and
aim to detect these abnormal flows by their dynamic context.

Considering the sparsity of abnormal flows and the abun-
dance of normal flows [1]–[3], it is difficult to learn abnormal
patterns from limited abnormal flows, and the imbalanced
ratio of abnormal and normal flows makes it hard to learn
unbiased classifiers to distinguish the abnormal flows from
the vast normal ones. To tackle these problems, most of
the existing works are conducted in a fully unsupervised or
supervised way [4]–[8]. Unsupervised models [4]–[6] do not
require labels but they can apply only to attacks with distinct
characteristics (such as DoS attack with bursty traffic flows).
For supervised models [7], [8], although they can accurately
detect abnormal flows based on the balanced adequate numbers
of labeled normal and abnormal flows, most of these works are
for static works. With fixed labels, they cannot adapt to the new
communication networks with new abnormal patterns. Thus,
to adapt to the dynamic environment, we need continuous
supervision from experts.

It is very challenging to continuously provide high-quality
labels for anomaly detection in dynamic communication net-
works due to the following two reasons. First, labor resources
are limited. To find the potential abnormal flows among the
vast normal ones, it requires a large number of experts with
the latest domain knowledge. Manually offering high-quality
labels for all data is labor and time consuming, which is
impractical. Second, the network is dynamic. New attacks keep
arising in the dynamic networks, and can not be detected based
on prior labels. Also, the adversarial attacks can add carefully
crafted small perturbations to make prior knowledge lose effi-
cacy [9], [10]. There are some initial attempts to reduce lim-
itation from prior labels in a semi-supervised way [11]–[14].
The most relevant work among them is GraphUCB [11] which
utilizes multi-armed bandits to conduct anomaly detection with
limited feedback from experts. However, it is designed for
static networks, where features and structures of each arm do
not change with time. In dynamic communication networks,
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for flows from the same OD pair (Origin and Destination node
pair), both the abnormality degree and the abnormal pattern are
changing (i.e., the origin can sometimes send abnormal flows
and sometimes send normal ones to the same destination, and
different kinds of attacks happen between the same OD pair).
Correspondingly, the features and structures are changing,
and models on historical labels of these flows can even
have negative effects. It is difficult for the existing works to
adapt to the new environment especially with limited labor
resources.

With the above concerns, we aim to conduct interactive
anomaly detection in dynamic communication networks with a
small amount of supervision. By interactions, supervision can
be provided by human experts and there is high possibility to
obtain the ground truth for a small number of flows. The main
challenges are (i) how to effectively detect abnormal flows
with limited supervision; and (ii) how to adapt to the dynamic
communication networks for anomaly detection. In detail, for
the first challenge, with limited interactions, there is a dilemma
between exploiting historical received labels and exploring
flows of new abnormal patterns, where multi-armed bandits
are widely used to solve this dilemma. To improve efficiency
ad accuracy, we utilize semi-parametric bandits for interactive
learning based on the parametric and non-parametric models,
respectively. However, since the existing semi-parametric ban-
dits are proposed for recommender systems, and cannot fit the
dynamic networks with the new evolving abnormal patterns
and continuously changing structures. To adapt to the dynamic
networks and tackle the second challenge, we have several
observations: in terms of flow features, abnormal flows with
similar attacks have similar flow features, which can provide
a quick estimation on the abnormality of new flows; and for
flow sequences, attackers have high probability to conduct
a sequence of abnormal flows towards the target victims,
thus origin and destination nodes of each flow can help
indicate flows’ abnormality. These observations can be utilized
to optimize the abnormality estimation results in dynamic
networks.

In this paper, we propose a novel Human-in-the-loop
framework for Anomaly Detection in Dynamic communi-
cation Networks, HADDN, which utilizes contextual ban-
dits to detect abnormal flows in dynamic communication
networks with periodic supervision. In detail, we build
semi-parametric expected reward to estimate the abnormality
based on feature-based clusters and structure characteristic
vector for each flow, sharing parameters among flows in each
cluster based on the similarities to old flows, and utilizing
each flow’s origin and destination nodes’ historical behaviors
to improve the efficiency and accuracy of the abnormality
estimation in a dynamic environment. Based on the dynamic
expected rewards, we propose to implement two models to
adapt to the new communication networks, strategically select-
ing flows to present to experts and updating the anomaly
detection model with the new received labels. Our major
contributions are summarized as follows:

• We model the problem of interactive anomaly detec-
tion in dynamic communication networks, translating the
online stochastic optimization problems into one bandit
task;

• We propose HADDN, a periodic update framework
for adaptive anomaly detection with the full advan-
tage of limited labels in dynamic communication
networks;

• We novelly define the dynamic expected reward by uti-
lizing feature-based clusters and structural correlations to
help increase the adaptiveness to the dynamic networks
for anomaly detection;

• We introduce two implementations for the semi-
parametric expected reward of HADDN with theoretical
proof; and

• We demonstrate the substantial improvement of our
proposed approaches compared to state-of-art anomaly
detection methods.

II. RELATED WORK

A. Anomaly Detection in Communication Networks

It is important to keep communication networks safe and
secure, as they are the foundation of various Internet appli-
cations. Thus, anomaly detection in communication networks,
which aims to detect abnormal flows, is essential. Except those
designed for communication networks [2], [3], [15], [16],
some existing anomaly detection methods can also work
for communication networks, and we categorize them into
unsupervised, supervised and semi-supervised ones.

First, for the unsupervised models [4]–[6], these algorithms
are designed for some special attacks with distinct character-
istics. For example, Pang et al. [4] obtain the refined anomaly
detection results based on iterative selecting distinguishable
features. Eswaran et al. [5] conduct anomaly detection based
on observations that abnormal flows tend to occur as bursts
of activity and will connect parts of the networks which
are sparsely connected. As these works treat abnormality in
communication networks as general outliers, they can only
detect characteristic abnormal flows and can not adapt to
different kinds of changing attacks in the dynamic networks.

Second, for the supervised anomaly detection
models [7], [8], they can achieve good detection results
with balanced numbers of labeled normal and abnormal
flows. For example, Zhou et al. [7] utilize DNN to train a
classifier to detect internet intrusion attacks. However, they
are for static networks and labels should keep adequate and
balanced, which is unrealistic for dynamic networks.

Third, in order not to be limited to the small num-
bers of abnormal labels, some semi-supervised detection
works [13], [14] assume that anomalies have different char-
acteristics from the normal ones, and fully depend on labeled
normal flows. However, they will be subject to the same limita-
tion as unsupervised ones, only work for characteristic attacks.
To detect different kinds of attacks, some works utilize active
learning to present unlabeled data to experts, and incremen-
tally update models based on new labels [11], [12], [17], [18].
For example, Ding et al. [11] utilize bandits algorithm to
select the most abnormal ones to query experts, treating
instances in a community as the same arm. Zha et al. [12]
utilize reinforcement learning to learn a meta-policy for query
selection to maximize the labeled anomalies. However, these
works can only work in static networks, and they do not
consider the dynamic abnormal patterns and continuously
changing structures of each instance, which will greatly reduce
the effectiveness of anomaly detection in dynamic networks.

Different from the aforementioned works, we aim to exploit
contextual information to detect abnormal flows for vari-
ous attack types, and investigate semi-parametric bandits to
improve the efficiency and accuracy of anomaly detection in
dynamic communication networks.
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B. Contextual Multi-Armed Bandits

Multi-Armed Bandit (MAB) based models are widely used
for active learning, especially in recommender systems [19].
It is usually formulated as a system of many base arms, where
the learning agent pulls one arm in every interaction, gets a
reward from the environment and tries to maximize the cumu-
lative rewards based on the observed reward. Generally, MAB
algorithms can be categorized into two categories, i.e., the
classical ones (with non-parametric expected reward) and
the contextual ones (with parametric expected reward) [20].
The classical non-contextual MAB algorithms [21], [22] have
no contextual features, among which, upper confidence bound
(UCB) [21] and Thompson sampling [22] are the most popular
ones. For contextual bandits, by utilizing contextual features,
they achieve great efficiency especially when the number of
arms is large, and have attracted increasing attention in recent
years [23]–[25].

To further increase the efficiency and effectiveness, some
works utilize clusters to build contextual bandits models with
shared parameters [26]–[29] for personalized recommendation.
For example, Gentile et al. [26] assume users within each
group tend to provide similar feedback to different arms, thus
they utilize the confidence bound to build user clusters, and
share parameters across users in the same cluster. Li et al. [27]
not only group users but also group items (e.g., arms) based on
the similarity of clusterings induced over the users. Although
the set of items and users can be changing, they are based
on the assumption that users tend to give different feedback
on the same arm and the characteristic of each arm do not
change, which is completely different to the bandit settings
of anomaly detection. For anomaly detection, the abnormal
arms should always have a higher possibility to get reward 1,
thus different experts should provide similar feedback on the
same arm. Also, for each arm, both the abnormality degree and
the abnormal patterns are changing, thus the characteristics of
arms are changing. In summary, the existing works on the
clustering of bandits can not be adopted to anomaly detection
in dynamic communication networks.

Some works have utilized contextual MAB to detect anom-
alies, but most of these works are for outliers [30], [31].
For example, Zhuang et al. [30] identify abnormal arms
based on the assumption that their expected rewards deviate
significantly from most of the other arms. They do not
require interactions with human, and obtain rewards based on
reward expectation and standard deviation. Except for these
general outliers, to adapt to different kinds of abnormalities,
some works involve human interactions [11], [12], [32], [33].
However, these works ignore that the characteristics of flows
are frequently changing, and cannot adapt to the dynamic
communication networks. Thus, we propose to maintain the
detection accuracy in dynamic communication networks by
sharing the updated value to all flows in the same feature-based
cluster and updating semi-parametric expected rewards in each
interaction.

III. PROBLEM STATEMENT

We first introduce the notations used in this paper; for con-
venience, we summarize the main notations used throughout
the paper in Table I. All estimated notations are attached with a
hat like â, and the optimal results are attached with an asterisk
like a∗. Other notations will be explained in the corresponding
sections.

Assuming there are {1, . . . , t, . . . , T} time periods, the set
Dt is made up of flows appearing in the t-th time period.

TABLE I

TABLE OF MAIN NOTATIONS

The feature matrix of all flows across all time periods is
denoted as X. The feature matrix of flows on Dt is Xt ∈
R

|Dt|×d, and xt,a ∈ R
d is the a-th row of Xt. To characterize

flow a from various aspects, we construct d-dimension feature
vector xt,a for each flow a with both flow package attributes
(e.g., duration) and structural attributes (e.g., counts of flows
with the same destination node in the past two seconds) [34].
The OD pair of each flow a is maintained in P , where
Pa = (i, j).

As shown in Fig. 1, in the dynamic networks, both abnormal
patterns (i.e., attacks) and network structure change with
time. To adapt to the new communication network, we pro-
vide K labels in each time period for the periodic update.
In detail, in the t-th network, we provide K labels on Dt to
update the model; and before the next periodic update in the
(t + 1)-th network, we can detect anomalies on Dt+1 with the
updated model.

Although both labeled abnormal and normal flows can
improve the performance of anomaly detection, it has
been demonstrated that the labeled anomalies provide more
help than the normal ones [32] and our experiments in
Section VII-D also provide evidence for this observation. Thus
we formally define our problem as follows

Given flow feature matrix X and their corresponding OD
pair set P , by interactions with experts, we aim to: (1) in each
time period t, maximize the number of labeled abnormal flows
within K interactions, including the new-attack ones; and
(2) in each time period t+1, maximize the detected abnormal
flows based on labels received before t + 1.

IV. PROPOSED FRAMEWORK HADDN

In this section, we propose the framework HADDN and
translate our two problems into one bandit task. We first
provide an overview of the proposed framework.

A. Framework Overview

In dynamic communication networks, new attacks keep
arising and can not be characterized by static models. In order
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Fig. 1. An illustration of HADDN.

to adapt to new communication networks, we propose a
novel Human-in-the-loop framework for Anomaly Detection in
Dynamic communication Networks (HADDN). An overview
of HADDN is shown in Fig. 1. We divide the framework
into two parts, i.e., the periodic update and the anomaly
detection. (1) For the periodic update, in each time period,
we select flows to present to experts and update the anomaly
detection model with the new received labels. The parameter
update component helps increase the adaptiveness to the new
networks, and the selection policy component will directly
decide the number of labeled anomalies. (2) For the anomaly
detection, we estimate the abnormality vector r̂t+1 ∈ R

|Dt+1|
for flows on Dt+1 by the model learned from the received
labels before t + 1. The dynamic abnormality estimation
component will not increase the number of detected anomalies
but also help the selection policy to exploit historical labels.

There are many similarities between the task of maximizing
the number of labeled abnormal flows and the task of maximiz-
ing the number of detected abnormal flows. The difference is
that the labeling process needs experts’ participation to adapt
to the new networks, while the process of detecting abnormal
flows does not need experts but a trained detection model.
As the dynamic abnormality estimation is a part of selection
policy, we translate our two maximization problems into one
bandit task, maximizing the labeled abnormal flows in the
continuously changing networks with limited labor resources.

B. Contextual Bandits for Dynamic Communication Networks

Bandits are widely used to find the optimal tradeoff between
exploring new possibilities and exploiting historical experi-
ences [35]. To adapt to new networks, we utilize contextual
bandits to maximize the labeled abnormal flows and improve
anomaly detection performance accordingly. In bandits prob-
lems, there are multiple arms, where each arm has a probability
pa to get reward 1, and 1− pa to get 0. In each time period,
we can try K times, and one arm can be pulled each time.
In our scenario, we regard each OD pair as an arm, and
flows from some OD pairs have a higher possibility to be
abnormal. Flows of each arm can be treated as an outward
manifestation of abnormality, and will also be represented
as a for simplification. If the k-th presented flow on Dt is
abnormal, we will receive a reward r̃tk

= 1. To maximize
the accumulated rewards in K times interactions, the selection

policy will be updated based on the received reward (i.e., label)
after each interaction.

To estimate the abnormality (or reward) rt,a of each arm
a on Dt, contextual bandits utilize the feature vector xt,a to
increase the convergence speed. The expected reward is

rt,a = f(xt,a,Ω∗
a), (1)

where f(xt,a,Ω∗
a) is a parametric reward function, Ω∗

a is the
optimal feature weight for arm a.

We define the history set Ftk
= {xν,aντ

, aντ , r̃ντ |(ν, τ) ∈
Ψtk
}, where aντ is the selected flow of the τ -th interaction

on Dν . The history index Ψtk
is constructed by the historical

interactions before the k-th interaction on Dt, thus ν ∈
{1, · · · , t} and τ ∈ {1, · · · , k−1}. Given FTK+1 , the optimal
function parameter can be obtained by

Ω∗
a = argmax

Ωa

P (FTK+1 |Ωa). (2)

To maximize the number of labeled abnormal flows,
we need a policy that can maximize the cumulative reward.
As direct analysis of cumulative reward is not tractable,
the cumulative regret Reg(TK) of T ×K interactions is used
instead [11], [36], [37]

Reg(TK) =
T∑

t=1

K∑
k=1

(wt,a∗
tk

rt,a∗
tk
− wt,atk

rt,atk
), (3)

where a∗
tk

and atk
are the optimal arm and the selected arm.

To reduce the costs of abnormality, it is instinctive to give
expensive flows (i.e., with higher-cost attacks) higher weights,
and we provide weights wt,a∗

tk
and wt,atk

for a∗
tk

and atk
.

Also, with expensive flows, to increase the detection speed
and reduce costs, the scale of time periods should be small.
However, updating too often can lead to high labor expenses.
The flow weights (or costs) will affect the scale of time
periods. Considering the complexity to estimate the real costs
(e.g., based on flow locations, attack types and attack scales),
for simplification, we set wt,a = 1 to be the weight of any
arm a in each time period t with the pre-defined time scale.

C. Solution Analysis

Since we cannot obtain the FTK+1 at the beginning,
as shown in Fig.1, we update Ω̂tk,a for better abnormality
estimation (i.e., expected reward) r̂tk,a in each interaction.
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Algorithm 1 Proposed Framework HADDN
1: for t = 1, · · · , T do
2: for k = 1, · · · , K do
3: // Dynamic Abnormality Estimation
4: for a ∈ Dt do
5: Estimate E[r̂tk ,a|Ω̂tk,a]
6: // Model Implementation based on r̂tk,a

7: Select atk
by the Section Policy

8: Receive reward r̃tk
from experts

9: Update parameters to maximize P (Ftk+1 |Ω̂tk+1,a)
10: Detect anomalies by r̂t+1 before the (t + 1)-th update

Fig. 2. Feature-based clusters, where the bold denotes features of the flows
after t, the unbold are before t, and the red are labeled anomaly.

We describe the process of our bandit-based framework in
Algorithm 1. In detail, for the k-th interaction of Dt, we first
obtain the abnormality estimation E[r̂tk,a|Ω̂tk,a] for each arm
a on Dt from line 4 to 5. To maximize the labeled anomalies
in the new network, we implement our bandit model with the
estimation r̂tk,a, utilizing our selection policy to pursue the
tradeoff between exploitation and exploration in line 7, and
updating parameters for better abnormality estimation with
received rewards from line 8 to 9. After K times interactions,
we utilize the learned parameters Ω̂tK+1,a to detect anomalies
before the next periodic update, utilizing the abnormality
estimation r̂t+1 = {r̂t+1,a|a ∈ Dt+1} ∈ R

|Dt+1| based
on Eq.(1).

With the framework HADDN, there remains two challenges,
i.e., (1) how to construct the expected rewards E[r̂tk,a|Ω̂tk,a]
for accurate abnormality estimation, and (2) based on r̂tk,a,
how to accordingly implement the bandit model to maxi-
mize the labeled anomalies in the dynamic communication
networks. To tackle these two challenges, we will introduce
our dynamic abnormality estimation in Section V, and provide
two implementation algorithms in Section VI with derived
selection policy and parameter update procedures.

V. DYNAMIC ABNORMALITY ESTIMATION

Traditional contextual bandits construct expected reward
fully on the parametric function of features like Eq.(1) [35].
To provide better abnormality estimation for E[r̂tk,a|Ω̂tk,a],
we define the expected reward in a semi-parametric form,
utilizing feature-based clusters and historical flow sequences.

A. Modeling Feature-Based Clusters

In dynamic networks, as shown in Fig. 1 and Fig. 2,
new arms keep arising and abnormal patterns of each arm
are always changing. For example, flows a10 and a11 are

from new node pairs (n4, n7) and (n8, n4). Also, a3 and
a9 are from (n1, n4) but xa9 is very different to xa3.
To improve both efficiency and accuracy of adapting the
dynamic communication networks, we need to (1) speed up
the abnormality estimation of flows from new arms; and (2)
adjust the estimation result for new attacks.

First, as arms have different and changing characteristics
in dynamic networks, each arm will have its own parameters
θa in Eq. (1). For new arms, in order not to train parameters
from scratch and speed up the abnormality estimation process,
we utilize cluster-based parameters θc. Except for the speedup,
the θc will also help adapt to each arm’s changing abnormal
patterns. In other words, no matter which arm it is and how
it changes, flows from these arms are similar if they employ
similar attacks. As similar attacks will lead to similar flow
features [2], we classify flows into clusters based on features,
and flows in the same cluster c share the same θc. Thus, we can
transform the (t + 1)-th network in Fig. 1 into Fig. 2. Our
contextual reward is defined as

rt,a = f(xt,a, θc(a)), (4)

where c(a) is a clustering function for flow a.
To explain the interactive process, we take Fig. 1 and Fig. 2

as an example. In the t-th network, we construct clusters
based on the static features, and obtain the updated parameters
θc for each cluster based on K labels, where the reduced
parameters will still well estimate the expected rewards for
each arm with their personalized xt,a. In the (t+1)-th network,
to detect anomalies among the new flows (i.e., a9, a10 and
a11), we can quickly get the approximate expected rewards
by their cluster information. In detail, a9 is clustered into c1,
and a10 and a11 are clustered into c3. As a9 is in a cluster
most of which are labeled abnormal, and a11 is away from the
center of its cluster c3, thus a9 and a11 have a high chance
to be abnormal and will be presented to experts. In summary,
these cluster-based parameters will help speedup the detection
process while maintaining the accuracy of the expected reward
estimation for each time period.

Second, to adjust the estimation result for new abnormal
patterns, we utilize the non-parametric value bc(ak) as the
estimation bias to improve the accuracy.

rt,a = f(xt,a, θc(a)) + bc(a), (5)

where bc(a) is different from cluster to cluster. Since clustering
results are based on feature similarities [38], irrelevant features
will be eliminated before the clustering process. However,
new attacks show different dependencies on different features,
which may lead to different feature selection results. To well
fit the expected reward estimation for new attacks, the adap-
tive bias can greatly help alleviate the inappropriate features
problem for dynamic environment [39].

Any unsupervised feature selection and unsupervised clus-
tering can be adopted in our model. To utilize the mutual
effect of feature selection and clustering, we use MCFS
(Multi-Cluster Feature Selection) [40] to select features such
that the multi-cluster structure of the data can be well pre-
served. As to clustering, although there are new abnormal pat-
terns in dynamic networks, the number of attacks is relatively
steady. For example, there are different kinds of DoS attacks
(e.g., ping-of-death, syn flood, smurf), but these DoS attacks
have similar features and can be included in one cluster. Thus,
here we can fix the number of clusters and perform k-means
clustering for simplification. As to the similarity metrics for
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Fig. 3. Two kinds of historical flow sequences.

k-means, since different similarity metrics can lead to different
clustering results, we utilize Euclidean distances here. That is
because some kinds of abnormal patterns (e.g., DoS attacks)
can lead increases of not only one feature. Although features’
absolute values greatly increase, the feature vectors’ relative
similarities between the abnormal flows and normal flows
(e.g., by cosine distances) may be similar. Also, we will
discuss incremental clustering in the next subsection.

B. Modeling Structural Correlations

Although the expected reward of flow a on the same origin
and destination node pair (i, j) is not fixed, the historical
flows where i or j are involved can still provide guidance
for anomaly detection. As shown in Fig. 3, abnormal flows
happen in a sequence, i.e., multi-step and multi-hop flow
sequences, where the previous detected abnormal flows will
increase the abnormal possibility of the upcoming flows [41].
For example, in Fig. 3(a), if a1 is detected as an anomaly, there
may come another abnormal flows based on the multi-step
flow sequences. Thus, the participation of n1 can increase a2’s
probability to be abnormal. Similarly, for the multi-hop flow
sequences a3 and a4 in Fig. 3(b), if a3 is a detected anomaly,
the participation of n4 will also increase a4’s probability to be
abnormal. In summary, for the origin and destination node i
and j of flow a, the frequency of i and j’s involvement of
abnormal flows can help estimate a’s abnormality.

With a small budget to receive feedback, the number
of detected abnormal flows is limited. Considering the
feature-based clusters in Section V-A, flows in the same cluster
share the similar expected reward, which means flows in some
of the clusters have a higher possibility to be abnormal. Thus
the frequency of i and j’s flows in these clusters can help
estimate a’s possibility to be abnormal. However, we do not
know which cluster is abnormal. What’s more, there are many
flows related to i or j, and these flows may be classified into
more than one cluster. It is still difficult to take advantage of
the structural correlation information.

In order to learn each cluster’s contribution to the abnormal-
ity estimation, we construct the structure characteristic vector
za ∈ R

C for each flow a, where each element z
(c)
a denotes

the accumulated number of its historical structural correlated
flows in the cluster c. We take a9 in Fig. 1 as an example.
Without considering the new emerged flows, the origin n1
of a9 has two flows in cluster c2 and two in c3, and the
destination n4 has one in c1 and one in c2, thus we have
za9 = [1, 3, 2] based on flows of Dt. The involvement of
c1 and c2 (i.e., clusters with many labeled abnormal nodes)
would contribute to a9’s abnormality estimation. To utilize
the clustering statistic information zt,a based on the historical
structure correlations, the expected reward is

rt,a = f(xt,a, θc(a)) + g(zt,a, ρ) + bc(a), (6)

where ρ is a parameter vector shared to all arms, as it evaluates
the abnormality of each cluster and will not be affected by each
individual arm. Note that the initial motivation of clustering is
to utilize the arms’ current attacks, but structural correlations
can only help detect anomalies based on historical abnormal
flows and are not related to exact abnormal patterns. Thus,
structural correlations should not join the clustering process.

In the (t + 1)-th network, if new attacks make the cor-
responding flows largely deviate the existing feature-based
clusters, the fixed number of clusters is not suitable to provide
an accurate expected reward estimation for these flows any
more. Besides, it will affect the parameter optimization of
the existing clusters and further decrease the detection perfor-
mance. To tackle these problems, we can utilize incremental
clustering [42], [43] for more precise and adaptive clustering
results. Although g(·) can be defined unaffected by the updated
dimensions of zt,a and ρ, the corresponding cluster-related
parameters θc and bc for the new cluster should be trained
from scratch, which will decrease the model efficiency to some
degree. There is a tradeoff between accuracy and efficiency.

VI. SEMI-PARAMETRIC IMPLEMENTATION

To achieve accurate and efficient anomaly detection
results for the dynamic communication networks, we utilize
feature-based clusters and structural correlations to define the
reward rt,a in a semi-parametric form by Eq. (6). Although
the E[r̂tk,a|Ω̂tk,a] can help estimate the abnormality with
exploitation of historical labels, it is still important to explore
new possibility, especially for new attacks. In order to meet the
balance between exploration and exploitation in dynamic com-
munication networks, we provide two semi-parametric linear
implementations based on two widely-used bandit strategies,
i.e., Upper Confidence Bound (UCB) [21] and Thompson
Sampling (TS) [22], to select flows to present to experts and
update parameters to maximize P (Ftk+1 |Ω̂tk+1,a) accordingly.

We first define the linear expected reward. There are plenty
of parametric functions for f(·) and g(·), among which, linear
function is the most widely used. In this work, we utilize linear
function for the parametric part of the expected reward in the
t-th interaction, i.e., f(xa, θc(a)) = xT

a θc(a) and g(za, ρ) =
zT

a ρ, where θc(a) ∈ R
d and ρ ∈ R

C . The expected reward is

ra = xT
a θc(a) + zT

a ρ + bc(a), (7)

Note that, as algorithms are the same for each time period t,
we utilize k, xak

, zak
to denote tk, xt,atk

and zt,atk
in the

following sections for notation simplification.

A. UCB-Based Strategy

Upper Confidence Bound is widely used to explore new
possibilities based on expected rewards. As an UCB-based
algorithm, to minimize accumulated regret Reg(TK), there
are two steps in the k-th interaction of each Dt:

• Selection Policy: Calculate the upper confidence bounds
(UCBs) Uk for the expected rewards, and select the arm
ak with highest UCB to present to experts; and

• Parameter Update: Update parameters to maximize
P (Ftk+1 |Ω̂tk+1,a) with the new received reward r̃k for
improve the estimation of both expected rewards and
UCBs in the (k + 1)-th interaction.

To provide the implementable algorithm, we first derive the
UCBs based on the proposed expected reward in Eq. (6),
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and will introduce the corresponding parameter update in the
following subsections.

1) Selection Policy: As the non-parametric part bc(ak) is the
bias of the received reward and the expected reward, we define
b̂k,c(ak) = r̄k,c(ak)− f̄(xak

, θ̂c(ak))− ḡ(zak
, ρ̂), where r̄k,c(ak)

is the average of received rewards of arms in cluster c(ak),
f̄(xak

, θ̂k,c(ak)) + ḡ(zak
, ρ̂k) represents the average of

expected rewards of arms in c(ak). Let oc(ak) denote the
number of received rewards of arms in c(ak) before k-th
interaction, we can define r̄k,c(ak) = 1

oc(ak)

∑oc(a)
τ=1 r̃τ ,

f̄(xak
, θ̂k,c(ak)) = 1

oc(ak)

∑oc(ak)

τ=1 xT
τ,aτ

θ̂k,c(ak) and

ḡ(zak
, ρ̂k) = 1

oc(ak)

∑oc(ak)

τ=1 zT
τ,aτ

ρ̂k. Accordingly,
we have the average optimal expected reward
r̄∗k,c(ak) = f̄(xak

, θ∗
c(ak)) + ḡ(zak

, ρ∗) + b∗c(ak) for the
optimal expected reward r∗k,a of each a in cluster c(ak)
based on the optimal parameters b∗c(ak), θ∗

c(ak) and ρ∗.
Next, to derive the upper bound of the expected reward
in Theorem 1, we divide it into three sub-equations, and
will first introduce Lemma 1, 2 and 3 to derive the three
sub-equations.

Lemma 1: Let αk = R
√−2ln(δ/2)/oc(ak), where R

is a positive scalar. If the received reward r̃k has a
R-sub-Gaussian tail ηk = r̃k−r∗k,ak

, i.e., E(eμηk) ≤ eR2μ2/2,
then, with probability at least 1− δ, we have

|r̄k,c(ak) − f̄(xak
, θ∗

c(ak))− ḡ(zak
, ρ∗)− b∗c(ak)| < αk. (8)

Proof: Since ηk is a zero-mean Gaussian noise lying in
[−R, R], by Hoeffding inequality, we have

P (|r̄k,c(ak) − f̄(xak
, θ∗

c(ak))− ḡ(zak
, ρ∗)− b∗c(ak)| < αk)

= P (|r̄k,c(ak)−r̄∗k,c(ak)| ≤ αk) = P (| 1
oc(ak)

oc(ak)∑
τ=1

ητ | ≤ αk)

≥ 1− 2 exp(−
2o2

c(ak)α
2
k∑

oc(ak)
(R − (−R))2)

) = 1− δ. (9)

which completes the proof. �
Lemma 2: With probability at least 1− δ/T , we have

|f(xak
, θ̂k,c(ak))− f̄(xak

, θ̂k,c(ak))
− f(xak

, θ∗
c(ak)) + f̄(xak

, θ∗
c(ak))| < βk (10)

where βk = (Rβ + 1)
√

ΔxT
k,ak

ΔA−1
k−1Δxak

=

(Rβ + 1)‖ΔxT
k,ak
‖ΔA−1

k−1
with Rβ =

√
1
2 ln 2KC

δ ,

Δxak
= xak

− 1
oc(ak)

∑oc(ak)

τ=1 xτ,aτ and ΔAk−1 =

Id +
∑oc(ak)

τ=1 Δxτ,aτ ΔxT
τ,aτ

.
Proof: As f(xak

, θ̂k,c(ak)) − f̄(xak
, θ̂k,c(ak)) −

f(xak
, θ∗

c(ak)) + f̄(xak
, θ∗

c(ak)) can be regarded as

(Δxak
)θ̂k,c(ak) − (Δxak

)θ∗
c(ak), this lemma can be proven

based on the Lemma 1 of [35], �
Lemma 3: With probability at least 1− δ/K , we have

|g(zak
, ρ̂k)− ḡ(zak

, ρ̂k) + ḡ(zak
, ρ∗)− g(zak

, ρ∗)| < γk,

where γk = (Rγ +1)‖ΔzT
k,ak
‖ΔB−1

k−1
, and Rγ =

√
1
2 ln 2KN

δ .
Let ok denote the number of received arms before the k-th
interaction, then Δzak

= zak
− 1

ok

∑ok

τ=1 zτ,aτ , ΔBk−1 =
IC +

∑ok

τ=1 ΔzT
τ,aτ

Δzτ,aτ .

Proof: As g(zak
, ρ̂k) − ḡ(zak

, ρ̂k) + ḡ(zak
, ρ∗) −

g(zak
, ρ∗) can be regarded as (Δzak

)ρ̂ − (Δzak
)ρ∗, this

lemma can be proven in the similar way of Lemma 2. �
Theorem 1: With probability at least 1− δ, we have:

|r̂k,ak
− r∗k| ≤ αk + βk + γk (11)

Proof: Based on Lemma 1, 2 and 3, we arrive at

|r̂k,ak
− r∗k| = |r̄k,c(ak) − f̄(xak

, θ̂k,c(ak))− ḡ(zak
, ρ̂k)

+ f(xak
, θ̂k,c(ak)) + g(zak

, ρ̂k)
− f(xak

, θ∗
c(ak))− g(zak

, ρ∗)− b∗c(ak)|
= |r̄k,c(ak)−f̄(xak

, θ∗
c(ak))−ḡ(zak

, ρ∗)− b∗c(ak)

+ f(xak
, θ̂k,c(ak))− f̄(xak

, θ̂k,c(ak))
− f(xak

, θ∗
c(ak)) + f̄(xak

, θ∗
c(ak))

+ g(zak
, ρ̂k)− ḡ(zak

, ρ̂k)
+ ḡ(zak

, ρ∗)− g(zak
, ρ∗)|

≤ αk + βk + γk (12)

which completes the proof. �
Based on Theorem 1, the upper confidence bound of

expected reward for each arm a in the k-th interaction is

Uk,a = f(xa, θ̂k,c(a))+g(za, ρ̂k)+ b̂k,c(a) + αk + βk + γk.

(13)

2) Parameter Update: In order to minimize the accumulated
regret Reg(TK), we need to learn the optimal coefficients
to estimate the expected rewards. Thus, we utilize ridge
regression [35] to learn the θ∗

c and ρ∗ that can best fit all
receive rewards r̃k by

K∑
k

(r̃k − xT
ak

θ∗
c(ak) − zT

ak
ρ∗)2 +

∑
c

‖θ∗
c‖2 + ‖ρ∗‖2, (14)

and b∗c can be obtained based on the θ∗
c , ρ∗ and Eq. (7).

In each interaction, the close-form estimation of the coef-
ficients can be achieved by setting the derivative of Eq. (14)
with respect to ρ̂k and θ̂k,c(ak) to be zero, and we have

ρ̂k = P−1
k Qk,

θ̂k,c(ak) = A−1
k,c(ak)(Bk,c(ak) −Ck,c(ak)ρ̂k), (15)

where we define Id ∈ R
d×d and IC ∈ R

C×C to be two identity
matrices, and

Pk = IC +
k∑

τ=1

zτ,aτ z
T
τ,aτ

,

Qk =
k∑

τ=1

zτ,aτ (r̃τ − xT
τ,aτ

θ̂τ,c(aτ)),

Ak,c(ak) = Id +
k∑

τ=1

xτ,aτ x
T
τ,aτ

,

Bk,c(ak) =
k∑

τ=1

xτ,aτ r̃τ , Ck,c(ak) =
k∑

τ=1

xτ,aτ z
T
τ,aτ

. (16)
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3) UCB-Based Online Learning Algorithm: With the
UCB-based strategy, we exploit historical feedback based on
the expected reward in Eq. (7) and explore new possibility by
the upper bound in Eq. (13). We summarize the UCB-based
online updating Algorithm 2. In each interaction, each flow
is evaluated by the UCB with Eq. (13). After we present the
arm with the highest UCB, we receive labels from experts, and
parameters can be updated by Eq. (15) based on the labels.
Taking the process in the t-th network as an example, we first
initialize the parameters and clusters from line 1 to 5, and
conduct K times interactions from line 7 to 26. Specially,
in each interaction, we estimate the UCBs for each arm in
line 10, present the arm with the highest Uk,a and receive
experts’ feedback in line 11. The parameter update is from line
13 to 25. As there are two coefficients θk and ρk, the update
of P and Q will be mutually affected by the A, B and C
in Eq. (15), we adopt the similar procedures as [36] in line
13 to 19. With the learned parameters, we detect anomalies
with r̂t+1 based on Eq.(6).

Based on Theorem 2, we bound the regret of UCB_HADDN
to Õ(

√
TKd), which is common in contextual bandits [21].

However, different from the existing algorithms, we separate
these interactions into T time intervals, thus we can keep
the freshness of labels to adapt to new communication net-
works and achieve better anomaly detection performance with
feature-based clusters and structural correlations.

Theorem 2: With probability at least 1−δ, the regret of the
algorithm is

O(
√

CTK ln δ +
√

TKd ln3(CTK ln(TK)/δ)

+
√

TKd ln3(NTK ln(TK)/δ)) (17)

Proof: With αk = R
√−2ln(δ/2)/oc(ak), βk = (Rβ +

1)‖ΔxT
k,ak
‖ΔA−1

k−1
and γk = (Rγ + 1)‖ΔzT

k,ak
‖ΔB−1

k−1
,

we have
T∑

t=1

K∑
k=1

αk≤O(
√

ln(δ)
∑

t

∑
k

1√
oc(ak)

) ≤ O(
√

CTK ln δ).

(18)

Then the regret can be proved by the Theorem 1 in [35]
with

T∑
t=1

K∑
k=1

βk ≤ O(
√

TKd ln3(CTK ln(TK)/δ)

T∑
t=1

K∑
k=1

γk ≤ O(
√

TKd ln3(NTK ln(TK)/δ). (19)

which completes the proof. �

B. TS-Based Strategy

Thompson Sampling [22] is another popular criteria to
meet the balance between exploitation and exploration, which
selects arms by sampling from the posterior distribution of
the optimal arm on candidate arms. As the optimal arm
is unknown, modeling the distribution of expected reward
is adopted. In each time step, we sample a reward from
the posterior distribution of expected reward for each arm,
present the arm with the largest sampled reward to the experts,
receive the label, and utilize the received labels to update the

Algorithm 2 UCB_HADDN
Input: X, P , Dt, K , C, d, R, δ
1: // Initialization
2: Construct C clusters with c(a) based on X, and construct

Z by P
3: P0 ← IC , Q0 ← 0C , o0 ← 0,

Rβ ←
√

1
2 ln 2TC

δ , Rγ ←
√

1
2 ln 2TN

δ ,

α0 ← R
√−2ln(δ/2), β0 ← α0, γ0 ← α0

4: for c ∈ C do
5: oc ← 0, A0,c ← Id, C0,c ← 0d×C , B0,c ← 0d×1

6: // In the t-th communication network
7: for k = 1, . . ., K do
8: // Select the presented flow based on r̂t,a

9: for a ∈ Dt do
10: Uk,a ← xT

a θ̂k,c(a) + zT
a ρ̂k + b̂k,c(a) + αk−1 + βk−1 +

γk−1

11: Choose ak = argmaxa∈Dk
Uk,a and get the feedback

r̃k from experts
12: // Parameter update
13: Pk ← Pk−1 + CT

k−1,c(ak)A
−1
k−1,c(ak)Ck−1,c(ak)

14: Qk ← Qk−1 + CT
k−1,c(ak)A

−1
k−1,c(ak)Bk−1,c(ak)

15: Ak,c(ak) ← Ak−1,c(ak) + xak
xT

ak

16: Ck,c(ak) ← Ck−1,c(ak) + xak
zT

ak

17: Bk,c(ak) ← Bk−1,c(ak) + xak
r̃k

18: Pk ← Pk + zak
zT

ak
−CT

k,c(ak)A
−1
k,c(ak)Ck,c(ak)

19: Qk ← Qk + zτ,ak
r̃k −CT

k,c(ak)A
−1
k,c(ak)Bk,c(ak)

20: ρ̂k+1 ← PkQk

21: oc(ak)+ = 1, ok+ = 1, z
c(ak)
ak + = 1

22: for c ∈ {1, . . . , C} do
23: θ̂k+1,c ← A−1

k,c(Bk,c −Ck,cρ̂k+1)
24: b̂k+1,c ← r̄k+1,c − f̄(xa, θ̂k+1,c)− ḡ(za, ρ̂k+1)
25: Update αk, βk, γk based on Lemma 1, 2 and 3
26: Dt ← Dt − {ak}
27: Detect anomalies by r̂t+1, a before the (t + 1)-th update

reward distribution. As the optimal arm receives the highest
expected reward, such a sampling process is equivalent to
direct sampling from the posterior distribution of the optimal
arm on candidate arms.

For TS, Bayesian regret is widely used to minimize expec-
tation of accumulated regret Reg(TK) as

BayesRegret(TK) = E(Reg(TK)). (20)

Also, there are two main steps in the k-th interaction:
• Selection Policy: Sample reward r̂k,a by Gaussian distri-

bution based on the expected rewards, and find the arm
ak with highest r̂k,ak

for query label from experts; and
• Parameter Update: Update parameters based on the

received reward r̃k for the Gaussian distribution in the
next interaction.

The process is similar to the UCB-based methods, but the strat-
egy to explore new possibilities is different. For UCB-based
algorithms, the size of region for exploration depends on the
Upper Confidence Bounds, while it depends on the variance
of Gaussian distribution in this section. We will introduce the
selection policy first.
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1) Selection Policy: Based on Eq. (7), the expected reward
r̂k,a of each arm a in time k can be regarded as a sample from
the Gaussian distribution N(f(xa, θ̂k,c(a)) + g(za, ρ̂k), σ2

1),
where the bias b̂k,c(a) is controlled by the variance σ1.

In order to minimize the BayesRegret(TK), we update
our model by P (θ̂k,c, ρ̂k|Fk), and update the expected reward
estimation by P (r̂k,a|Fk, θ̂k,c(a), ρ̂k) with updated parame-
ters. Based on Bayesian function, the posterior distribution of
parameters P (θ̂k, ρ̂k|Fk) and the posterior distribution of the
expected reward P (r̂k,a|Fk, θ̂k, ρ̂k) can be denoted as

P (θ̂k, ρ̂k|Fk) ∝
k−1∏
τ=1

P (r̃τ |r̂τ,aτ )∏
a∈D

P (r̂τ,a|θ̂τ,c(a), ρ̂τ )

×P (θ̂τ,c(a), ρ̂τ ), (21)

P (r̂k,a|Fk, θ̂k,c(a), ρ̂k) ∝
∏

τ∈Ck

P (r̃τ |r̂τ,aτ )

×P (r̂τ,a|θ̂τ,c(a), ρ̂τ ). (22)

where Ck = {τ < t : c(aτ ) = c(a)}.
2) Parameter Update: Except obtaining the linear expected

reward r̂k,a|θ̂k,c(a), ρ̂k from N(xT
a θ̂k,c(a)+zT

a ρ̂k, σ2
1), the dis-

tribution of received reward P (r̃k|r̂k,ak
), and the distributions

of parameters P (θ̂k,c) and P (ρ̂k) can be also be regarded as
samples from Gaussian distributions based on [20], [37],

r̃k|r̂k,ak
∼ N(r̂k,ak

, σ2
2),

θ̂k,c ∼ N(0, σ2
3Id),

ρ̂k ∼ N(0, σ2
4IC), (23)

where σ1, σ2, σ3 and σ4 are hyper-parameters. Inserting the
Eq. (23) and Eq. (7) into Eq. (21), we can get the mean θ̄k,c of
the parameter posterior distribution by setting its probability

density function’s derivative to zero ∂P (θ̂k,c,ρ̂k|Fk)

∂θ̂k,c
= 0 as

∑
τ∈Ck

1
σ2

1

xaτ (−r̄τ,c(aτ) + xT
aτ

θ̂τ,c(aτ) + zT
aτ

ρ̂τ )

+
1
σ2

3

θ̂τ,c(aτ) = 0 (24)

Thus, we have θ̄k,c(a) = D−1
k,c(a)Ek,c(a), where

Dk,c(a) =
∑
τ∈Ck

1
σ2

1

xaτ x
T
aτ

+
1
σ2

3

Id,

Ek,c(a) =
∑
τ∈Ck

(r̄τ,c(aτ ) − zT
aτ

ρ̂τ )xaτ

σ2
1

. (25)

The deviation can be obtained by calculating the second
derivative of P (θ̂k,c, ρ̂k|Fk) to θ̂k,c, i.e., D−1

k,c, and we have

θ̂k,c|Fk ∼ N(θ̄k,c,D−1
k,c). (26)

Similarly, we have

ρ̂k|Fk ∼ N(ρ̄k,F−1
k ), (27)

Algorithm 3 TS_HADDN
Input: X, P , Dt, K , C, d, δ1, δ2, δ3, δ4

1: // Initialization
2: for c ∈ C do
3: Sample θ1,c from Eq. (23)
4: Sample ρ1 from Eq. (23)
5: // In the t-th communication network
6: for k = 1, . . ., K do
7: // Select the presented flow based on r̂t,a

8: for a ∈ Dt do
9: Sample r̂k,a from N(r̄k,a, σ2

k,a)
10: Choose ak = arg maxa∈D r̂k,a and get the feedback r̃k

11: // Parameter update
12: Dk,c(ak) ← Dk−1,c(ak) + 1

σ2
1
xak

xT
ak

13: Ek,c(ak) ← Ek−1,c(ak) +
(�rk−zT

ak
ρ̂k−1)xak

σ2
1

14: Sample θ̂k,c(ak) from N(D−1
k,c(ak)Ek,c(ak),D

−1
k,c(ak))

15: for c ∈ C − {c(ak)} do
16: Dk,c ← Dk−1,c, Ek,c ← Ek−1,c

17: Fk ← Fk−1 + 1
σ2
1
zak

zT
ak

18: Gk ← Gk−1 +
(�rk−xT

ak
θ̂k−1,c(ak))

σ2
1

zak

19: Sample ρ̂k from N(F−1
k Gk,F−1

k )
20: oc(ak) ← oc(ak) + 1
21: Dt ← Dt − {ak}
22: Detect anomalies by r̂t+1, a before the (t + 1)-th update

where

ρ̄k = F−1
k Gk,

Fk =
k−1∑

τ

1
σ2

1

zaτ z
T
aτ

+
1
σ2

4

IC ,

Gk =
k−1∑

τ

(r̄τ,c(aτ ) − xT
aτ

θ̂τ,c(aτ))
σ2

1

zaτ . (28)

Next, we insert Eq. (23) into Eq. (22), and the mean
r̄k,a of expected reward posterior distribution by calculating
∂P (r̂k,a|Fk,θ̂k,c(a),ρ̂k)

∂r̂k,a
= 0 as

−oc(a)σ
2
1(r̄k,a − r̄k,c(a))− σ2

2(r̄k,a − xT
a θ̂k,c(a) − zT

a ρ̂k)=0
(29)

Thus, we have

r̄k,a =
oc(a)σ

2
1 r̄k,c(a) + σ2

2(xT
a θ̂k,c(a) + zT

a ρ̂k)
oc(a)σ

2
1 + σ2

2

(30)

Also, based on the second derivative of
P (r̂k,a|Fk, θ̂k,c(a), ρ̂k) to r̂k,a, the deviation is

σ2
k,a = (

1
σ2

1

+
oc(a)

σ2
2

)−1. (31)

Thus, we have

r̂k,a|Fk, θ̂k,c(a), ρ̂k ∼ N(r̄k,a, σ2
k,a). (32)
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3) TS-Based Online Learning Algorithm: With the
TS-based strategy, we exploit historical feedback to calculate
the mean expected reward in Eq. (30) and explore new
possibility by the variance of Gaussian distribution in
Eq. (32). We summarize the TS-based online learning in
Algorithm 3. In each interaction, the expected reward of
each flow is sampled in line 9 by Eqs. (31) and (32). After
we present the arm with the highest r̂k,ak

, we get feedback
from experts and update parameters from line 12-19 based
on Eqs. (25) and (28).

Based on Theorem 3, we bound the regret of TS_HADDN
to Õ(

√
TKd). Similar to UCB_HADDN, although it is a

common upper bound of regret, we can achieve better anomaly
detection performance with well designed expected reward and
periodic labels in the dynamic communication networks.

Theorem 3: With probability at least 4δ
NT 2K2 , the upper

Bayesian regret bound of the TS_HADDN is

Õ(
√

NTK(
d√
N

)α) (33)

Proof: Based on Proposition 1 of [44], the bayesian regret
can be obtained by

BayesRegret(TK) = E(Uk,ak
− r̂k,ak

) + E(r∗k −Uk,ak
)

≤ O(
T∑

t=1

K∑
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− r∗k|) (34)

Based on Eq. (30), we have
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Based on Lemma 5 of [20], with probability 1 − 4δ
NT 2K2 ,

it is easy to obtain that

|r̂k,ak
− r∗k| ≤ |r̂k,ak

− r̄k,c(ak)|+ |r̄k,c(ak) − r∗k|

≤
√
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Fig. 4. Distribution of normal/abnormal flows over different time periods.

where we define dmax ≤
√

N/dTK( d√
N

)2α and σ2
2

σ2
1

=
TK
N ( d√

N
)−α, and we can get the upper bound of

BayesRegret(TK) as

O(
T∑

t=1

K∑
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which completes the proof. �

VII. EXPERIMENTAL ANALYSIS

In this section, we conduct experiments to demonstrate the
effectiveness of our proposed framework HADDN. Through
the experiments, we aim to answer the following questions:

• Q1: Compared to the state-of-the-art models, can the
proposed UCB_HADDN and TS_HADDN achieve better
labeling performance in the dynamic networks?

• Q2: Can UCB_HADDN and TS_HADDN achieve better
anomaly detection performance?

• Q3: How do the abnormal and normal labels affect the
final anomaly detection performance? and

• Q4: How do the pre-defined parameters affect the anom-
aly detection performance?

Next, we will first introduce the experiment settings followed
by experiments to answer these questions.

A. Experimental Settings

1) Datasets: Two publicly available datasets CICIDS20171

and DARPA19982 are used for evaluation. Following the
guidance,3 we first extract 41 features for data packages of
each dataset, including continuous features like flow duration
and categorical features like protocols. For those categorical
ones, we use one-hot vectors to represent these features.

1https://www.unb.ca/cic/datasets/ids-2017.html
2https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-

evaluation-dataset
3http://kdd.ics.uci.edu/databases/kddcup99/
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TABLE II

STATISTICS OF DATASETS

To imitate the dynamic network environment, one day
and one week are regarded as a new time period for
CICIDS2017 and DARPA1998, respectively, thus both datasets
have seven time periods. Also, to provide enough interactions
for algorithm convergence as well as evaluate the adaptiveness
in the new time period, we divide the datasets into two parts
Dt and Dt+1, where Dt is made up of flows before the last
time period and Dt+1 is constructed by flows of the last
time period. What’s more, to estimate whether we can explore
new attacks in the new time period, we imitate new attacks.
On the Dt+1, the most frequent attacks are “PortScan” and
“satan” for CICIDS2017 and DARPA1998, respectively. Thus
we regard “PortScan” and “satan” as new attacks, and remove
all flows of these two attack types on Dt for both datasets.
Also, to estimate whether we can detect old attacks based on
the historical labels, we randomly select about 10% normal
and abnormal flows from each time period into Dt+1.

After the preprocessing, the distributions of abnor-
mal/normal flows over different time periods are shown
in Fig. 4 and the detailed statistics are shown in Table II.
From which, we can observe that attacks do not always occur
as bursts (e.g., 2nd period in CICIDS2017 and 4th period
in DARPA1998), and abnormal flows are much smaller than
normal flows generally.

2) Compared Methods: We compare with the representative
and state-of-the-art contextual approaches, which include

• LinUCB [36]: A contextual bandit algorithm whose linear
parametric expected rewards utilize flow features to learn
separate parameters for each arm.

• LinTS [37]: A linear parametric Thompson-sampling-
based bandit algorithm whose parameters are globally
shared among all flows.

• GraphUCB [11]: A LinUCB-based anomaly detection
model, where their parameters can be shared among
instances in the same feature-based clusters.

• CINFO [4]: An unsupervised anomaly detection model
with feature selection.

• Meta-AAD [12]: A reinforcement learning model which
can adaptively detect anomalies from different distribu-
tions of data.

• U_Hc: Our UCB_HADDN but eliminating the structure
correlation parts in the expected reward and upper bound.

• U_H0: Our UCB_HADDN without the exploration part.
• T_Hc: Our TS_HADDN but eliminating the structure

correlation parts in the expected reward and Gaussian
distribution.

• T_H0: Our TS_HADDN without the exploration part.

For simplification, we also use U_H and T_H to represent our
proposed UCB_HADDN and TS_HADDN in the following
experiments. Since GraphUCB is developed for attributed
networks, it assumes that linked instances share similarities,
which doesn’t hold for the communication networks. Thus we
only implement the nodal attributes part of their algorithm,
i.e., Eq. (4) in our paper. This approach can also be treated as

Fig. 5. Labeling performance comparison on Dt.

a variant of UCB_HADDN, which utilizes the cluster-based
parameters but eliminates the non-parametric deduction and
structural correlations. Also, for the unsupervised approach
CINFO, the interactive process can be regarded as that we
present abnormal flows to the experts by their abnormality
estimation results in descending order. As to Meta-AAD,
it requires batches of labels to train the adaptive model, and
can not be used for labeling. Thus, we directly provide the
maximized number of true labels to train the model and
only compare with it in Section VII-C. Also, in order not to
influence the new abnormal patterns of Dt+1 and provide fair
results, we update the randomly selected 10% part of Dt+1

for five times and present the average results.
3) Evaluation Metrics: To evaluate both the labeling per-

formance and the anomaly detection performance, we adopt
several widely used metrics.

• Cumulative Regret [19], [24]: To evaluate the labeling
performance on both Dt and Dt+1, this metric shows the
cumulative regret we receive with respect to the number
of interactions by Eq.(3). Lower cumulative regret repre-
sents higher labeling performance.

• Anomaly Discovery Curve [11], [33]: To evaluate the
anomaly detection performance on the Dt+1, it plots the
number of true anomalies with respect to n. Each dot in
this curve represents the number of true anomalies among
those with the top n abnormality estimation values.
Ideally, this curve should climb as quickly as possible.

B. Labeling Performance Comparison

To answer the Q1, we will evaluate the labeling performance
on both Dt and Dt+1. In order to eliminate the noisy features
for building clusters, we use MCFS [40] to select features and
utilize KMeans to construct clusters. For CICIDS2017, d = 10
and C = 10; and for DARPA1998, d = 20 and C = 5.

We provide 50 labels for each time period. As we have six
time periods in Dt, we provide 300 labels on Dt+1 in both
datasets, and k changes from 0 to 300. Similarly, there are
50 labels on Dt+1 and k changes from 0 to 50 on Dt+1. The
comparison results on cumulative regret in two datasets are
presented in Fig. 5 and Fig. 6. From these results, we make
the following observations

• Generally, the interactive learning algorithm performs
better than the unsupervised CINFO, which demonstrates
the necessity of experts’ involvement.

• LinUCB sometimes plays worse than CINFO, which is
because it trains each arm separately and suffers from
cold start. It also demonstrates the necessity of clustering.

• Generally, our proposed approaches can outperform other
state-of-the-art algorithms in both datasets especially on
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Fig. 6. Labeling performance comparison on Dt+1.

Fig. 7. Anomaly detection performance comparison on Dt+1.

Dt+1 in Fig. 6, which shows that we can gain better
tradeoff between explore and exploitation and achieve
better labeling performance on Dt.

• UCB_HADDN provides more labels for anomalies than
U_Hc in general, and so are TS_HADDN and T_Hc,
which demonstrates the effectiveness of utilizing struc-
tural correlations.

• In CICIDS2017, U_H0 and U_H receive similar cumu-
lative regrets. In DARPA1998, T_H0 and T_H achieve
matchable performance. This is because some attacks
can lead to great numbers of abnormal flows. Without
exploration, H_H0 and T_H0 can fully exploit historical
labels and provide right labels for flows in the same
abnormal patterns. However, U_H0 and T_H0 can not
quickly adapt to new abnormal patterns on Dt+1 (as
shown in Fig. 6 and Fig. 7).

Based on the aforementioned observations of both Dt and
Dt+1, we can answer the Q1 that our UCB_HADDN and
TS_HADDN can achieve better labeling performance in the
dynamic networks.

C. Anomaly Detection Performance Comparison

To answer the Q2, we utilize the model learned from Dt,
and estimate the abnormality of each flow on Dt+1 based
on the expected reward (i.e., abnormality estimation) of each
algorithm. In Fig. 7, we plot the anomaly discovery curve to
show how the number of anomalies changes with regard to
n, where each dot represents the number of true anomalies
among those with the top n abnormality estimation results.
Also, in Table III, we provide the time (seconds) we use to
provide 300 labels on Dt (i.e., train the model) and the time
to obtain the abnormality estimation results on Dt+1 (i.e., test
the detection performance). From these results, we can observe
that

• As the unsupervised CINFO only treats the Dt+1 as a
new static network, the interactive learning algorithm can

TABLE III

EFFICIENCY COMPARISON

Fig. 8. Anomaly detection performance with different strategies.

detect more abnormal flows with the updated model based
on experts’ historical guidance.

• Among the interactive learning algorithms, our U_H and
T_H consistently outperform other baselines, demon-
strating the effectiveness of involving the cluster-based
non-parametric value.

• Among all baselines, Meta-AAD can obtain similar
results to our U_H in CICIDS2017. However, as shown
in Table III, with complex neural networks, Meta-AAD
needs much more time to train the model. Also,
as Meta-AAD requires large numbers of labels for train-
ing, the performance in DARPA1998 is not as good as
ours.

Based on the aforementioned observations, we can answer
the Q2 that our UCB_HADDN and TS_HADDN can achieve
better anomaly detection performance compared to the state-
of-the-art models.

D. Influence of the Labeled Normal and Abnormal

To provide insights of the importance of labeled normal and
abnormal flows, we change the selection policy to maximize
the number of labeled normal flows on Dt, i.e., if we present a
normal flow to the expert, we receive a reward 1, otherwise the
reward is 0. After the labeling process with changed selection
policy on Dt, we estimate the abnormality on Dt+1 with the
updated model. The comparison results are presented in Fig. 8.
We can observe better anomaly detection performance when
we try to maximize the labeled anomalies on Dt.

With the original strategy to maximize the number of
labeled anomalies on Dt, we further estimate how the maxi-
mized number of labels K in each time period influences the
anomaly detection performance on Dt+1. As shown in Fig. 9,
more labels can provide better anomaly detection performance
in general. However, as some attacks can lead to large numbers
of abnormal flows and there is tradeoff between exploitation
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Fig. 9. Anomaly detection performance with different numbers of labels.

Fig. 10. Impacts of C and d on anomaly detection performance.

Fig. 11. Impacts of σ1, σ2, σ3 and σ4 on anomaly detection performance.

and exploration, the increase of labels sometimes can not lead
to an increase in anomaly detection performance.

Thus, we can answer the Q3, despite the tradeoff between
exploitation and exploration weaken the effectiveness of labels,
compared to the labeled normal flows, the labeled anomalies
can provide more help to adapt to dynamic networks and
obtain better anomaly detection performance, which also pro-
vides evidence for our initial target to maximize the labeled
abnormal flows in dynamic networks.

E. Parameter Analysis

With the same proposed expected reward, both implemen-
tation approaches have two pre-defined parameters, i.e., the
number of clusters C and feature dimension d. Specially,
for TS_HADDN, there are four extra parameters, i.e., σ1,
σ2, σ3 and σ4, to denote the variance of expected reward
r̂k,a, the received reward r̃k, the feature weight θ̂k,c and the
structure weight ρ̂k.

In Fig. 10 and Fig. 11, we only show the results in
CICIDS2017 since we have similar observations on both
datasets. For C and d in Fig. 10, although the mutual influence
is complicated and not monotonic, with the increase of C,
the performance generally first increases, implying theeffec-
tiveness of clustering. For the four variances in Fig. 11, as σ1

and σ2 are related to reward and σ3 and σ4 are related to

parameters, we divide them into two groups for simplification.
We can observe that with the increase of the four variances,
the performance generally first increases, suggesting wider
exploration on Dt can help improve the anomaly detection
performance on Dt+1. After the first increase, the performance
decreases, implying that too wide exploration may lead to far
deviated from the exploitation results (i.e., the mean values).
There is a tradeoff between exploration and exploitation.

VIII. CONCLUSION

In this paper, we novelly utilize semi-parametric bandits
to detect abnormal flows in dynamic networks with lim-
ited labor resources. We propose a novel semi-parametric
bandit framework HADDN, utilizing contextual information,
i.e., feature-based clusters and structural correlations, to adapt
to dynamic networks, making connections between historical
labels and new emerging flows. The proposed semi-parametric
bandit framework leverages parametric functions with contex-
tual information to ensure the efficiency of anomaly detection,
and takes advantage of non-parametric value to improve the
accuracy of anomaly detection by the closed gap between
the expected reward and real reward. We provide two lin-
ear implementations UCB_HADDN and TS_HADDN for
HADDN with theoretical proof. Experimental results on two
publicly available datasets demonstrate the great improvement
of HADDN compared to other state-of-the-art baselines.

There are several interesting directions that need further
investigation as future work. First, in this paper, we only
present one flow in each interaction. We would like to present
more flows in each interaction with lower computing com-
plexity in streaming settings. Second, the number of clusters is
fixed in this paper. We will study how to detect anomalies with
flexible and scalable clustering strategies in dynamic networks
with semi-parametric bandits next.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, p. 15:1–15:58, 2009.

[2] M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of network anomaly
detection techniques,” J. Netw. Comput. Appl., vol. 60, pp. 19–31,
Jan. 2016.

[3] R. Chalapathy and S. Chawla, “Deep learning for anomaly
detection: A survey,” 2019, arXiv:1901.03407. [Online]. Available:
http://arxiv.org/abs/1901.03407

[4] G. Pang, L. Cao, L. Chen, D. Lian, and H. Liu, “Sparse modeling-
based sequential ensemble learning for effective outlier detection in
high-dimensional numeric data,” in Proc. AAAI, 2018, pp. 3892–3899.

[5] D. Eswaran and C. Faloutsos, “SedanSpot: Detecting anomalies in edge
streams,” in Proc. ICDM, 2018, pp. 953–958.

[6] K. Xie, X. Li, X. Wang, G. Xie, J. Wen, and D. Zhang, “Graph
based tensor recovery for accurate internet anomaly detection,” in Proc.
INFOCOM, 2018, pp. 1502–1510.

[7] Y. Zhou, M. Han, L. Liu, J. S. He, and Y. Wang, “Deep learning
approach for cyberattack detection,” in Proc. INFOCOM Workshops,
2018, pp. 262–267.

[8] S. Mukkamala and A. H. Sung, “Detecting denial of service attacks
using support vector machines,” in Proc. 12th IEEE Int. Conf. Fuzzy
Syst. (FUZZ-IEEE), May 2003, pp. 1231–1236.

[9] M. Kloft and P. Laskov, “Online anomaly detection under adversarial
impact,” in Proc. AISTATS, 2010, pp. 405–412.

[10] I. Corona, G. Giacinto, and F. Roli, “Adversarial attacks against intrusion
detection systems: Taxonomy, solutions and open issues,” Inf. Sci.,
vol. 239, pp. 201–225, Aug. 2013.

[11] K. Ding, J. Li, and H. Liu, “Interactive anomaly detection on attributed
networks,” in Proc. WSDM, 2019, pp. 357–365.

[12] D. Zha, K. Lai, M. Wan, and X. Hu, “Meta-AAD: Active anomaly
detection with deep reinforcement learning,” in Proc. ICDM, 2020,
pp. 771–780.



MENG et al.: INTERACTIVE ANOMALY DETECTION IN DYNAMIC COMMUNICATION NETWORKS 2615

[13] S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, and
N. F. Samatova, “Anomaly detection in dynamic networks: A survey,”
Wiley Interdiscipl. Rev., Comput. Stat., vol. 7, no. 3, pp. 223–247, 2015.

[14] H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar,
“Efficient GAN-based anomaly detection,” 2018, arXiv:1802.06222.
[Online]. Available: http://arxiv.org/abs/1802.06222

[15] G. Cormode and M. Thottan, Algorithms for Next Generation Networks
(Computer Communications and Networks). Springer, 2010.

[16] X. Meng, S. Wang, Z. Liang, D. Yao, J. Zhou, and Y. Zhang, “Semi-
supervised anomaly detection in dynamic communication networks,” Inf.
Sci., vol. 571, pp. 527–542, Sep. 2021.

[17] J. Cannady, “Next generation intrusion detection: Autonomous reinforce-
ment learning of network attacks,” in Proc. 23rd Nat. Inf. Syst. Secur.
Conf., 2000, pp. 1–12.

[18] S. Shamshirband, B. Daghighi, N. B. Anuar, M. L. M. Kiah, A. Patel,
and A. Abraham, “Co-FQL: Anomaly detection using cooperative
fuzzy Q-learning in network,” J. Intell. Fuzzy Syst., vol. 28, no. 3,
pp. 1345–1357, 2015.

[19] S. Li, B. Wang, S. Zhang, and W. Chen, “Contextual combinatorial
cascading bandits,” in Proc. ICML, 2016, pp. 1245–1253.

[20] M. Ou, N. Li, C. Yang, S. Zhu, and R. Jin, “Semi-parametric sam-
pling for stochastic bandits with many arms,” in Proc. AAAI, 2019,
pp. 7933–7940.

[21] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2, pp. 235–256,
2002.

[22] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, pp. 285–294, Dec. 1933.

[23] A. N. Elmachtoub, R. McNellis, S. Oh, and M. Petrik, “A practical
method for solving contextual bandit problems using decision trees,”
2017, arXiv:1706.0487. [Online]. Available: https://arxiv.org/abs/
1706.0487

[24] A. Krishnamurthy, Z. S. Wu, and V. Syrgkanis, “Semiparametric con-
textual bandits,” in Proc. ICML, 2018, pp. 2781–2790.

[25] A. Ghosh, S. R. Chowdhury, and A. Gopalan, “Misspecified linear
bandits,” in Proc. AAAI, 2017, pp. 3761–3767.

[26] C. Gentile, S. Li, and G. Zappella, “Online clustering of bandits,” in
Proc. ICML, 2014, pp. 757–765.

[27] S. Li, A. Karatzoglou, and C. Gentile, “Collaborative filtering bandits,”
in Proc. SIGIR, 2016, pp. 539–548.

[28] X. Wang, S. C. H. Hoi, C. Liu, and M. Ester, “Interactive social
recommendation,” in Proc. CIKM, 2017, pp. 357–366.

[29] Y. Ban and J. He, “Local clustering in contextual multi-armed bandits,”
in Proc. WWW, 2021, pp. 2335–2346.

[30] H. Zhuang, C. Wang, and Y. Wang, “Identifying outlier arms in multi-
armed bandit,” in Proc. NIPS, 2017, pp. 5204–5213.

[31] Y. Ban and J. He, “Generic outlier detection in multi-armed bandit,” in
Proc. KDD, 2020, pp. 913–923.

[32] M. A. Siddiqui, A. Fern, T. G. Dietterich, R. Wright, A. Theriault,
and D. W. Archer, “Feedback-guided anomaly discovery via online
optimization,” in Proc. KDD, 2018, pp. 2200–2209.

[33] S. Das, W. Wong, T. G. Dietterich, A. Fern, and A. Emmott, “Incorpo-
rating expert feedback into active anomaly discovery,” in Proc. ICDM,
2016, pp. 853–858.

[34] R. A. R. Ashfaq, X.-Z. Wang, J. Z. Huang, H. Abbas, and Y.-L. He,
“Fuzziness based semi-supervised learning approach for intrusion detec-
tion system,” Inf. Sci., vol. 378, pp. 484–497, Feb. 2017.

[35] W. Chu, L. Li, L. Reyzin, and R. E. Schapire, “Contextual bandits with
linear payoff functions,” in Proc. AISTATS, 2011, pp. 208–214.

[36] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proc. WWW,
2010, pp. 661–670.

[37] S. Agrawal and N. Goyal, “Thompson sampling for contextual bandits
with linear payoffs,” in Proc. ICML, 2013, pp. 127–135.

[38] S. Alelyani, J. Tang, and H. Liu, “Feature selection for clustering: A
review,” in Data Clustering. London, U.K.: Chapman & Hall, 2018,
pp. 29–60.

[39] Y. Peng et al., “A practical semi-parametric contextual bandit,” in Proc.
IJCAI, 2019, pp. 3246–3252.

[40] D. Cai, C. Zhang, and X. He, “Unsupervised feature selection for multi-
cluster data,” in Proc. KDD, 2010, pp. 333–342.

[41] Y. Zhang, X. Luo, and H. Luo, “A multi-step attack-correlation
method with privacy protection,” J. Commun. Inf. Netw., vol. 1, no. 4,
pp. 133–142, Dec. 2016.

[42] E. Lughofer, “Extensions of vector quantization for incremental
clustering,” Pattern Recognit., vol. 41, no. 3, pp. 995–1011, Mar. 2008.

[43] M. Ester, H. Kriegel, J. Sander, M. Wimmer, and X. Xu, “Incremental
clustering for mining in a data warehousing environment,” in Proc.
VLDB, pp. 323–333.

[44] D. Russo and B. Van Roy, “Learning to optimize via posterior sampling,”
Math. Oper. Res., vol. 39, no. 4, pp. 1221–1243, Nov. 2014.

Xuying Meng received the B.S. degree from Wuhan
University in 2013 and the Ph.D. degree from
the University of Chinese Academy of Sciences
in 2018. She is currently an Associate Professor
with the Institute of Computing Technology, Chinese
Academy of Sciences. She has published innovative
works in top conference proceedings. Her current
research interests include data mining and secu-
rity protection of network services. She serves for
numerous conference program committees.

Yequan Wang received the B.S. degree Tianjin
University, China, in 2014, and the Ph.D. degree
from Tsinghua University in 2019. He is currently an
Assistant Professor with the Institute of Computing
Technology, Chinese Academy of Sciences. He has
published innovative works in top conference pro-
ceedings and journals. His research interests include
sentiment analysis and data mining. He serves as a
reviewer for top journals and conference program
committees.

Suhang Wang (Member, IEEE) received the B.S.
degree in electronics and communication engineer-
ing from Shanghai Jiao Tong University, Shanghai,
China, in 2012, the M.S. degree in electrical engi-
neering: systems from the University of Michigan,
Ann Arbor, MI, USA, in 2013, and the Ph.D. degree
in computer science from Arizona State University
in 2018. He is currently an Assistant Professor with
the College of Information Sciences and Technology,
The Pennsylvania State University, University Park,
PA, USA. He has published innovative works in top

conference proceedings and journals, such as WWW, AAAI, IJCAI, CIKM,
SDM, WSDM, ICDM, CVPR, and IEEE TRANSACTIONS ON KNOWLEDGE
AND DATA ENGINEERING (TKDE). His research interests include graph
mining, data mining, and machine learning. He serves for journal editorial
boards and numerous conference program committees.

Di Yao received the B.S. degree from Northeastern
University, China, in 2013, and the Ph.D. degree
from the University of Chinese Academy of Sciences
in 2019. He is currently an Assistant Professor
with the Institute of Computing Technology, Chinese
Academy of Sciences. He has published innovative
works in top conference proceedings and journals.
His research interests include spatio-temporal data
mining and deep learning. He serves as a reviewer
for top journals.

Yujun Zhang received the B.S. degree in computer
science from Nankai University in 1999 and the
Ph.D. degree in computer architecture from the
University of Chinese Academy of Sciences in 2004.
He is currently a Professor with the Institute of
Computing Technology, Chinese Academy of Sci-
ences, and the University of Chinese Academy of
Sciences. His research interests include intelligent
networking and systems, network architecture, and
network measurement and testing. He received
the Technological Invention Award from the China

Computer Federation in 2013 and the Beijing Young Famous Teacher Award
in 2019.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


